

Joint Committee on Preparing California for The 21st Century August 26, 2003

Terry Surles & George Simons California Energy Commission

Policy and RD&D Must be Linked in Order to Provide Benefits to the State

RD&D Activities Should Connect with Synergistic State Regulatory, Incentive, and Subsidy Programs

- Buildings Titles 20 and 24
- Renewables Renewable portfolio standard (RPS)
- * Environmentally-Preferred Advanced Generation 2007 ARB rules on distributed generation emissions
- * Energy Systems Integration CPUC/CEC initiatives in demand response/dynamic pricing, distributed energy resources, and transmission and distribution systems
- * Environmental Impacts/opportunities related to RPS, state initiatives (AB 1493) in climate change

\$ External Funding Into State Pier

(in \$ Millions)

PIER vs. GRI Early Commercialization Success

CEC R&DD for Improving Efficiency and Developing Distributed Resources also Addresses Climate Change

United States Refrigerator Use (Actual) And Estimated Household Standby Use v. Time

Electricity Generating Capacity for 150 Million Refrigerators + Freezers in the US

Existing Renewable Energy in California

Capacity (MWs)

~ 7000 MW total

Geothermal

Generated Electricity (GWhrs)

~ 33,000 GWhr/yr total

Goals for Future Renewable Development

Mandated Goals

• RPS: 20% by 2017

• EAP: 20% by 2010

~ 7000 MW and 40,000 GWhrs/yr of new renewables in 7
 to 14 years

Underlying Goals

- Addressing CA's electricity needs
- Generating significant societal benefits (non-energy)
- Regaining a leadership role

Issues Facing CA Renewables pier Development

Typically utility-scale

Risk of losing "green is clean" tag

Renewables in California: A Rich Diversity

Wind

Biomass/MSW

Geothermal

Small Hydro

Solar

PIER Renewables: An Integrated Renewables Future

Demand Center Systems

Renewables integrated with efficiency, metering to help meet demand at the source; enhance customer choices **Interconnected DG: Minigrids**

Diverse generation systems integrated among demand centers with dynamic controls and storage to meet localized capacity and reduce congestion

Strategic and "Super-Class" Bulk Systems

Next generation
"super-class"
renewables
strategically located to
help grid reliability &
security

Moving Towards the Preferred Future

- * Developing a realizable roadmap
 - Up-to-date inventory of CA's renewables
 - Matching renewables to needs/opportunities
- * Advancing preferred renewable technologies
 - Focus on California's needs
- * Facilitating responsive industries
 - Collaborative approaches

Updating California's Renewable Pier Resources: Wind Example

- * More accurate and up-to-date
- * Wind Assessment Example
 - 200 x 200 meter grid
 - Wind speeds and power
- * Pending or Underway:
 - Solar
 - Biomass
 - Ocean
 - Hydro

Identifying California's Electricity Needs

- * Completed to date
 - 2003, 2005, 2007
- * Still to run

2009, 2011, 2013, 2015 & 2017

* Status

- Being reviewed internally
- Need to integrate out-of-state transmission studies
- Localized "case studies" pending

Integrating Renewable Assessments Pier and Power Flows (Wind Example)

Wind power map

Wind power map with T&D system

Wind power map with T&D system and "hot spots"

Specific Example: CA Wind Potential (70m)

Gross Wind Potential: 295,187 MW Technical Potential*: 99,945 MW Current Installed: 1,752 MW

Opportunity: 98,193 MW

Technical Filters (excluded areas):*

Resource > 300 W/m²
Topography grade > 20%
Bodies of Water
Forested Areas
Urban Areas
State/National Parks & Monuments
Others (Natural Reserves)

Wind Analysis – Looking at Capacity Needs and Resource Potential

Integrating Renewable Assessments, Power Flows and Demographics

Forest Biomass & Bio Power Plants

Forest Wildfire Threat Areas

Forest Biomass, Bio Power Plants and T&D System

Developing Tomorrow's Renewable Pier Technologies

Integrating and lowering costs of solar

Making lower cost and more reliable wind

Developing biomass DG solutions

Collaborative Approach Tying Pier Technology Development to CA Needs

* Municipal utility alliances:

• Focused on developing renewables that meet municipal utility electricity needs (SMUD, Hetch Hetchy/PRP)

* Local government partnerships:

 Using local renewable resources to address local environmental and growth issues (Yolo, San Francisco, San Diego)

* Industry connections:

 Working with industry leaders with market savvy, assets and vision (PowerLight, GE, AstroPower, Clipper, Western United Dairymen)

* Coordination with other government programs:

 Leveraging expertise and funding to help expedite development of effective renewable technologies (NREL, CARB, CIWMB, EPA)

Benefits	Wind	Geothermal	Biomass	Solar	Small Hydro
Capacity (MW)	6730	2950	2520	800	1000
Generation (GWhr/yr)	19,300	22,200	14,600	2000	4800
Avoided Emissions (tpy)	9.6 million	14.3 million	8.5 million	1.2 million	3.8 million
State and Local Taxes	\$340 million	\$400 million	\$240 million	\$120 million	\$240 million
Employment (jobs)	4900	5900	3900	800	1100

California Will be Well-Served by The Development Of An Integrated, Flexible, and Comprehensive Plan That Incorporates Externalities with Energy Supply and Demand

- * Complex system with lack of systems perspective
- * Energy is only, intermittently, a big deal
- * "Rube Goldberg" approach to energy policy
- * Market is unable to address all societally or politically acceptable externalities
- * New technologies do not address Joe Bagadonitz needs

President's Commission on Critical Infrastructure Protection Highlights Vulnerabilities and Interdependencies

Driving to a Sustainable Future: The "E"s are Linked

- * Environment
- * Energy
- * Economics
- * Equity
- * Education

